Лекция 8. Приложения LSTM - Генерация текста
Теперь, когда мы хорошо понимаем основные механизмы LSTM, такие как то, как они решают проблему исчезающего градиента и обновляют правила, мы можем посмотреть, как использовать их в задачах NLP. LSTM интенсивно используются для таких задач, как генерация текста и создание заголовков изображений. Например, языковое моделирование очень полезно для задач суммирования текста или создания увлекательной текстовой рекламы для продуктов, где создание заголовка изображения или аннотация изображения очень полезно для извлечения изображения, и когда пользователю может потребоваться получить изображения, представляющие некоторую концепцию (например, кошка). Приложение, которое мы рассмотрим в этой главе, - это использование LSTM для генерации нового текста. Для этой задачи мы загрузим переводы некоторых народных рассказов братьев Гримм. Мы будем использовать эти истории для обучения LSTM и попросим в конце выпустить новую историю. Мы обработаем текст, разбив его на биграммы уровня персонажа (n-граммы, где n = 2) и сделаем словарь из уникальных биграмм. Мы также рассмотрим способы реализации ранее описанных методов, таких как жадная выборка или поиск лучей для прогнозов. Затем мы увидим, как мы можем реализовать модели временных рядов, отличные от стандартных LSTM, такие как LSTM с глазками и GRU. Далее мы увидим, как мы можем научиться генерировать текст с лучшими входными представлениями за пределами биграмм на уровне символов, таких как отдельные слова. Обратите внимание, что очень неэффективно иметь функции слова в горячем закодированном виде, так как словарь может быстро расти со словами по сравнению с биграммами уровня персонажа. Следовательно, один хороший метод для решения этой проблемы - сначала изучить вложения слов (или использовать вложения с предварительной подготовкой) и использовать их в качестве входных данных для LSTM. Использование вложения слов позволяет нам избежать проклятия размерности. В интересной реальной проблеме размер словарного запаса может составлять от 10 000 до 1 000 000. Тем не менее, вложения слов имеют фиксированную размерность, несмотря на размер словаря.
Наши данные 
Сначала мы обсудим данные, которые мы будем использовать для генерации текста, а также различные этапы предварительной обработки, используемые для очистки данных. 
О наборе данных. 
Во-первых, мы поймем, как выглядит набор данных, чтобы, когда мы видим сгенерированный текст, мы могли оценить, имеет ли он смысл, учитывая данные обучения. Мы загрузим первые 100 книг с сайта https://www.cs.cmu. edu/~spok/grimmtmp/. Это переводы книги братьев Гримм (с немецкого на английский). Это то же самое, что и текст, используемый в главе 6 «Периодические нейронные сети» для демонстрации производительности сетей RNN. Первоначально мы загрузим первые 100 книг с веб-сайта с помощью автоматического скрипта следующим образом:
url = 'https://www.cs.cmu.edu/~spok/grimmtmp/'
# Create a directory if needed 
dir_name = 'stories' if not os.path.exists(dir_name):
    os.mkdir(dir_name)
    def maybe_download(filename):
  """Download a file if not present"""
  print('Downloading file: ', dir_name+ os.sep+filename)
      if not os.path.exists(dir_name+os.sep+filename):
             filename, _ = urlretrieve(url + filename, dir_name+os.sep+filename)
                  else:
    print('File ',filename, ' already exists.')
    return filename
num_files = 100 filenames = [format(i, '03d')+'.txt' 
for i in range(1,101)]
  for fn in filenames:
    maybe_download(fn)

Теперь мы покажем примеры фрагментов текста, извлеченных из двух случайно выбранных историй.
Ниже приведен первый фрагмент: 
Then she said, my dearest benjamin, your father has had these coffins made for you and for your eleven brothers, for if I bring a little girl into the world, you are all to be killed and buried in them.  And as she wept while she was saying this, the son comforted her and said, weep not, dear mother, we will save ourselves, and go hence.  But she said, go forth into the forest with your eleven brothers, and let one sit constantly on the highest tree which can be found, and keep watch, looking towards the tower here in the castle.  If I give birth to a little son, I will put up a white flag, and then you may venture to come back.  But if I bear a daughter, I will hoist a red flag, and then fly hence as quickly as you are able, and may the good God protect you.

Затем она сказала, мой дорогой Вениамин, твой отец сделал эти гробы для тебя и для твоих одиннадцати братьев, потому что, если я приведу в мир маленькую девочку, тебя всех убьют и похоронят в них. И когда она плакала, когда говорила это, сын утешил ее и сказал: не плачь, дорогая мама, мы спасемся и пойдем отсюда. Но она сказала: иди в лес с твоими одиннадцатью братьями и давай постоянно сидеть на самом высоком дереве, которое можно найти, и продолжай наблюдать, глядя на башню здесь, в замке. Если я рожу маленького сына, я поставлю белый флаг, и тогда вы рискнете вернуться. Но если у меня будет дочь, я подниму красный флаг, а затем пролечу так быстро, как вы сможете, и пусть добрый Бог защитит вас. 
Второй фрагмент текста выглядит следующим образом: 
Red-cap did not know what a wicked creature he was, and was not at all afraid of him.
"Good-day, little red-cap," said he.
"Thank you kindly, wolf."
"Whither away so early, little red-cap?"
"To my grandmother's."
"What have you got in your apron?"
"Cake and wine.  Yesterday was baking-day, so poor sick grandmother is to have something good, to make her stronger."
"Where does your grandmother live, little red-cap?"
"A good quarter of a league farther on in the wood.  Her house stands under the three large oak-trees, the nut-trees are just below.  You surely must know it," replied little red-cap.
The wolf thought to himself, what a tender young creature.  What a nice plump mouthful, she will be better to eat than the old woman.

Красная шапочка не знала, каким злым существом он был, и совсем его не боялась.
"Добрый день, маленькая красная шапочка", сказал он.
"Спасибо, волк."
"Куда так рано, маленькая красная шапочка?"
"Моей бабушке".
"Что у тебя в фартуке?"
«Торт и вино. Вчера был день выпечки, поэтому бедной больной бабушке нужно что-то хорошее, чтобы сделать ее сильнее».
"Где живет твоя бабушка, маленькая красная шапочка?"
«Хорошая четверть лиги дальше в лесу. Ее дом стоит под тремя большими дубами, ореховые деревья чуть ниже. Вы, безусловно, должны это знать», - ответила маленькая красная шапочка.
Волк подумал про себя, какое нежное юное существо. Какой хороший пухлый ротик, она будет вкуснее, чем старуха.

Предварительная обработка данных 
С точки зрения предварительной обработки, мы первоначально сделаем весь текст строчными и разделим текст на символьные n-граммы, где n = 2. Рассмотрим следующее предложение: король охотился в лесу. Это будет разбито на последовательность n-грамм следующим образом: ['th,' 'e,' 'ki,' 'ng,' 'w,' 'as,'…] Мы будем использовать биграммы уровня персонажа, потому что это очень уменьшает размер словарного запаса по сравнению с использованием отдельных слов. Более того, мы заменим все биграммы, которые появляются в корпусе менее 10 раз, специальным токеном (то есть UNK), представляющим этот биграмм как неизвестный. Это помогает нам еще больше уменьшить словарный запас. 
Реализация LSTM 
Здесь мы обсудим детали реализации LSTM. Хотя в TensorFlow есть сублибра, в которой уже реализованы готовые к использованию LSTM, мы реализуем один с нуля. Это будет очень ценно, так как в реальном мире могут быть ситуации, когда вы не можете использовать эти готовые компоненты напрямую. Этот код доступен в упражнении lstm_for_text_generation.ipynb, расположенном в папке упражнений ch8. Однако мы также включим упражнение, в котором мы покажем, как использовать существующий RNN API TensorFlow, который будет доступен в lstm_word2vec_rnn_api.ipynb, расположенном в той же папке. Здесь мы обсудим код, доступный в файле lstm_for_text_generation.ipynb. Сначала мы обсудим гиперпараметры и их эффекты, которые используются для LSTM. После этого мы обсудим параметры (веса и смещения), необходимые для реализации LSTM. Затем мы обсудим, как эти параметры используются для записи операций, происходящих в LSTM. За этим последует понимание того, как мы будем последовательно передавать данные в LSTM. Далее мы обсудим, как мы можем реализовать оптимизацию параметров с помощью градиентного отсечения. Наконец, мы рассмотрим, как мы можем использовать изученную модель для вывода прогнозов, которые по сути являются биграммами, которые в конечном итоге составят значимую историю. 
Определение гиперпараметров 
Сначала мы определим некоторые гиперпараметры, необходимые для LSTM:
# Количество нейронов в скрытых переменных состояния num_nodes = 128
# Количество точек данных в пакете, который мы обрабатываем batch_size = 64
# Количество временных шагов, которые мы развертываем во время оптимизации num_unrollings = 50
dropout = 0.2 
# Мы используем dropout 

В следующем списке описан каждый из гиперпараметров: 
• num_nodes: это обозначает количество нейронов в состоянии памяти ячейки. 
Когда данных много, увеличение сложности памяти ячейки даст вам лучшую производительность; однако, в то же время, это замедляет вычисления. 
• batch_size: это объем данных, обработанных за один шаг. 
Увеличение размера пакета дает лучшую производительность, но предъявляет более высокие требования к памяти. 
• num_unrollings: это количество временных шагов, используемых в усеченном BPTT. 
Чем выше шаги num_unrollings, тем выше производительность, но это увеличит как требования к памяти, так и время вычислений. 
• отсев: наконец, мы будем использовать отсев (то есть метод регуляризации), чтобы уменьшить переоснащение модели и получить лучшие результаты; dropout случайным образом удаляет информацию из входных / выходных / переменных состояния перед передачей их в последующие операции. 
Это создает избыточные функции во время обучения, что ведет к повышению производительности.
 
Определение параметров 
Теперь мы определим переменные TensorFlow для фактических параметров LSTM. Сначала мы определим параметры входного шлюза: 

• ix: это веса, соединяющие вход с входным вентилем 
• im: это веса, соединяющие скрытое состояние с входным вентилем 
• ib: это смещение 

Здесь мы определим параметры :
# Input gate (it) - How much memory to write to cell state 
# Connects the current input to the input gate 
ix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], stddev=0.02)) 
# Connects the previous hidden state to the input gate 
im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], stddev=0.02)) 
# Bias of the input gate ib = tf.Variable(tf.random_uniform([1, num_nodes],-0.02, 0.02))

Аналогично, мы определим такие весовые коэффициенты для логического элемента забывания, значения кандидата (используемого для вычислений в ячейках памяти) и выходного шлюза. Шлюз забывания определяются следующим образом:
# Forget gate (ft) - How much memory to discard from cell state 
# Connects the current input to the forget gate 
fx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], stddev=0.02)) 
# Connects the previous hidden state to the forget gate 
fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], stddev=0.02)) 
# Bias of the forget gate fb = tf.Variable(tf.random_uniform([1, num_nodes],-0.02, 0.02))

Значение кандидата (используется для вычисления состояния ячейки) определяется следующим образом:
# Candidate value (c~t) - Used to compute the current cell state 
# Connects the current input to the candidate 
cx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], stddev=0.02)) 
# Connects the previous hidden state to the candidate 
cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], stddev=0.02)) 
# Bias of the candidate 
cb = tf.Variable(tf.random_uniform([1, num_nodes],-0.02,0.02))

Выходной шлюз определяется следующим образом:
# Output gate - How much memory to output from the cell state 
# Connects the current input to the output gate 
ox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], stddev=0.02)) 
# Connects the previous hidden state to the output gate 
om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], stddev=0.02)) 
# Bias of the output gate 
ob = tf.Variable(tf.random_uniform([1, num_nodes],-0.02,0.02))

Далее мы определим переменные для состояния и вывода. Это переменные TensorFlow, представляющие внутреннее состояние ячейки и внешнее скрытое состояние ячейки LSTM. При определении вычислительной операции LSTM мы определяем, что они должны обновляться с использованием последних значений состояния ячейки и скрытых состояний, которые мы вычисляем, используя функцию tf.control_dependencies (...).
# Variables saving state across unrollings. 
# Hidden state 
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False, name='train_hidden') 
# Cell state saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False, name='train_cell') 
# Same variables for validation phase 
saved_valid_output = tf.Variable(tf.zeros([1, num_ nodes]),trainable=False, name='valid_hidden') s
aved_valid_state = tf.Variable(tf.zeros([1, num_ nodes]),trainable=False, name='valid_cell')

Наконец, мы определим слой softmax, чтобы получить реальные прогнозы:
# Softmax Classifier weights and biases. 
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], stddev=0.02)) 
b = tf.Variable(tf.random_uniform([vocabulary_size],-0.02,0.02))
Обратите внимание, что мы используем нормальное распределение с нулевым средним и небольшим стандартным отклонением. Это хорошо, так как наша модель представляет собой простую одиночную ячейку LSTM. Однако, когда сеть становится глубже (то есть несколько ячеек LSTM, уложенных друг на друга), требуются более тщательные методы инициализации. Одна из таких техник инициализации известна как инициализация Ксавье, предложенная Глоротом и Бенжио в их статье «Понимание сложности обучения глубоких нейронных сетей с прямой связью», Материалы 13-й Международной конференции по искусственному интеллекту и статистике, 2010 год. Она доступна в качестве переменной инициализатора в TensorFlow, как показано здесь: https://www.tensorflow.org/api_docs/ python/tf/contrib/layers/xavier_initializer.
Определение ячейки LSTM и ее операций 
После определения весов и смещения мы можем определить операции внутри ячейки LSTM. Эти операции включают в себя следующее: 
• Расчет выходных данных, создаваемых входными и запоминающими элементами 
• Расчет внутреннего состояния ячейки 
• Расчет выходных данных, создаваемых выходным вентилем. 
• Расчет внешнего скрытого состояния. 

Ниже приведена реализация нашей ячейки LSTM:
def lstm_cell(i, o, state):
    input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib)
    forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb)
    update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
    state = forget_gate * state + input_gate * tf.tanh(update)
    output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob)
    return output_gate * tf.tanh(state), state

Определение входных данных и меток 
Теперь мы определим входные данные для обучения (развернутые) и метки. Обучающие входные данные представляют собой список с пакетами данных num_unrolling (последовательный), где каждый пакет данных имеет размер [batch_size, vocabulary_size]:
train_inputs, train_labels = [],[]
for ui in range(num_unrollings):
    train_inputs.append(tf.placeholder(tf.float32, shape=[batch_size,vocabulary_size],  name='train_inputs_%d'%ui))
train_labels.append(tf.placeholder(tf.float32,                               shape=[batch_size,vocabulary_size], name = 'train_labels_%d'%ui))

Мы также определяем заполнители для входных и выходных данных проверки, которые будут использоваться для вычисления путаницы проверки. Обратите внимание, что мы не используем развертывание для вычислений, связанных с проверкой достоверности.
# Validation data placeholders 
valid_inputs = tf.placeholder(tf.float32, shape=[1,vocabulary_size], name='valid_inputs') 
valid_labels = tf.placeholder(tf.float32, shape=[1,vocabulary_size], name = 'valid_labels')

Определение последовательных вычислений, необходимых для обработки последовательных данных. 
Здесь мы рассчитаем выходные данные, полученные в результате однократного развертывания обучающих входов рекурсивным способом. Мы также будем использовать выпадение (см. «Выпадение: простой способ предотвратить переоснащение нейронных сетей», «Шривастава», «Нитиш» и др., Journal of Machine Learning Research 15 (2014): 1929-1958), поскольку это дает немного лучшую производительность. Наконец, мы вычисляем значения logit для всех скрытых выходных значений, рассчитанных для обучающих данных:
# Keeps the calculated state outputs in all the unrollings 
# Used to calculate loss 
outputs = list()
# These two python variables are iteratively updated 
# at each step of unrolling 
output = saved_output state = saved_state
# Compute the hidden state (output) and cell state (state) 
# recursively for all the steps in unrolling 
for i in train_inputs:
    output, state = lstm_cell(i, output, state)
    output = tf.nn.dropout(output,keep_prob=1.0-dropout)
    # Append each computed output value
    outputs.append(output)
# calculate the score values 
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

Затем, прежде чем вычислять потери, мы должны убедиться, что выход и внешнее скрытое состояние обновлены до самого текущего значения, которое мы вычислили ранее. Это достигается добавлением условия tf.control_dependencies и сохранением logits и расчета потерь в условии:
with tf.control_dependencies([saved_output.assign(output),                            saved_state.assign(state)]):
    # Classifier.
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.concat(axis=0, values=train_labels)))

Мы также определяем логику прямого распространения для данных проверки. Обратите внимание, что мы не используем отсев во время проверки, а только во время обучения:
# Validation phase related inference logic
# Compute the LSTM cell output for validation data valid_output, valid_state = lstm_cell(    valid_inputs, saved_valid_output, saved_valid_state)
# Compute the logits valid_logits = tf.nn.xw_plus_b(valid_output, w, b)

Определение оптимизатора 
Здесь мы определим процесс оптимизации. Мы будем использовать современный оптимизатор, известный как Adam, который на сегодняшний день является одним из лучших стохастических оптимизаторов на основе градиента. Здесь в коде gstep - это переменная, которая используется для снижения скорости обучения с течением времени. Мы обсудим детали в следующем разделе. Кроме того, мы будем использовать градиентное отсечение, чтобы избежать взрыва градиента:
# Decays learning rate everytime the gstep increases 
tf_learning_rate = tf.train.exponential_decay(0.001,gstep, decay_steps=1, decay_rate=0.5) 
# Adam Optimizer. And gradient clipping. 
optimizer = tf.train.AdamOptimizer(tf_learning_rate) gradients, 
v = zip(*optimizer.compute_gradients(loss)) gradients,
 _ = tf.clip_by_global_norm(gradients, 5.0) 
optimizer = optimizer.apply_gradients(zip(gradients, v))

Затухающая скорость обучения со временем 
Как упоминалось ранее, я использую затухающую скорость обучения вместо постоянной скорости обучения. Снижение скорости обучения с течением времени является обычной техникой, используемой в глубоком обучении для достижения лучшей производительности и снижения переоснащения. Ключевой идеей здесь является понижение скорости обучения (например, в 0,5 раза), если трудность проверки не уменьшается в течение заранее определенного числа эпох. 
Давайте посмотрим, как именно это реализовано, более подробно:
Сначала мы определяем gstep и операцию для увеличения gstep, которая называется inc_gstep следующим образом:
# learning rate decay 
gstep = tf.Variable(0,trainable=False,name='global_step') 
# Running this operation will cause the value of gstep 
# to increase, while in turn reducing the learning rate 
inc_gstep = tf.assign(gstep, gstep+1)

С этим определением мы можем написать простую логику для вызова операции inc_gstep всякий раз, когда потери при проверке не уменьшаются, как показано ниже:
# Learning rate decay related 
# If valid perplexity does not decrease 
# continuously for this many epochs 
# decrease the learning rate 
decay_threshold = 5 
# Keep counting perplexity increases 
decay_count = 0 
min_perplexity = 1e10
# Learning rate decay logic 
def decay_learning_rate(session, v_perplexity):
  global decay_threshold, decay_count, min_perplexity
    # Decay learning rate  
if v_perplexity < min_perplexity:
    decay_count = 0
    min_perplexity= v_perplexity
else:
    decay_count += 1
if decay_count >= decay_threshold:
    print('\t Reducing learning rate')
    decay_count = 0
    session.run(inc_gstep)

Здесь мы обновляем min_perplexity всякий раз, когда мы испытываем новое минимальное затруднение проверки. Кроме того, v_perplexity - текущая сложность проверки.
Прогнозирование 
Теперь мы можем делать прогнозы, просто применяя активацию softmax к logits, которые мы рассчитывали ранее. Мы также определяем операцию прогнозирования для проверки logits:
train_prediction = tf.nn.softmax(logits) 
# Make sure that the state variables are updated 
# before moving on to the next iteration of generation with tf.control_dependencies([saved_valid_output.assign(valid_output),                            saved_valid_state.assign(valid_state)]):
    valid_prediction = tf.nn.softmax(valid_logits)

Вычисление недоумения (потери) 
Мы определили, что такое недоумение, в главе 7 «Сети с кратковременной памятью». Чтобы рассмотреть, недоумение является мерой того, насколько удивительно, что LSTM видит следующий n-грамм, учитывая текущий n-грамм. Следовательно, более высокая растерянность означает низкую производительность, тогда как более низкая растерянность означает более высокую производительность:
train_perplexity_without_exp = tf.reduce_sum(
    tf.concat(train_labels,0)*-tf.log(tf.concat(
        train_prediction,0)+1e-10))/(num_unrollings*batch_size) 
# Compute validation perplexity 
valid_perplexity_without_exp = tf.reduce_sum(valid_labels*-tf. log(valid_prediction+1e-10))

Сброс состояний 
Мы используем сброс состояний, так как обрабатываем несколько документов. Итак, в начале обработки нового документа мы возвращаем скрытое состояние обратно в ноль. Однако не очень ясно, помогает ли сброс состояния на практике. С одной стороны, кажется интуитивно понятным сбросить память ячейки LSTM в начале каждого документа на ноль, когда начинаешь читать новую историю. С другой стороны, это создает смещение переменных состояния в сторону нуля. Мы рекомендуем вам попробовать запустить алгоритм как со сбросом состояния, так и без него, и посмотреть, какой метод работает хорошо.
# Reset train state 
reset_train_state = tf.group(tf.assign(saved_state, tf.zeros([batch_size, num_nodes])),                             tf.assign(saved_output, tf.zeros([batch_size, num_nodes])))
# Reset valid state 
reset_valid_state = tf.group(tf.assign(saved_valid_state, tf.zeros([1, num_nodes])),                             tf.assign(saved_valid_output, tf.zeros([1, num_nodes])))

Жадная выборка для разрушения унимодальности 
Это довольно простой метод, в котором мы можем стохастически отобрать следующий прогноз из n лучших кандидатов, найденных LSTM. Кроме того, мы дадим вероятность выбора одного кандидата пропорционально вероятности того, что этот кандидат будет следующим биграммом:
def sample(distribution):
  best_inds = np.argsort(distribution)[-3:]
  best_probs = distribution[best_inds] / np.sum(distribution[best_inds])
  best_idx = np.random.choice(best_inds,p=best_probs)
  return best_idx

Генерация нового текста 
Наконец, мы определим заполнители, переменные и операции, необходимые для генерации нового текста. Они определены аналогично тому, что мы сделали для данных обучения. Сначала мы определим входной заполнитель и переменные для состояния и вывода. Далее мы определим операции сброса состояния. Наконец, мы определим вычисления ячейки LSTM и прогнозы для нового текста, который будет сгенерирован:
# Text generation: batch 1, no unrolling. 
test_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size], name = 'test_input')
# Same variables for testing phase 
saved_test_output = tf.Variable(tf.zeros([1, num_nodes]), trainable=False,    name='test_hidden') 
saved_test_state = tf.Variable(tf.zeros([1, num_nodes]),                               trainable=False, name='test_cell')
# Compute the LSTM cell output for testing data 
test_output, test_state = lstm_cell( test_input, saved_test_output, saved_test_state)
# Make sure that the state variables are updated 
# before moving on to the next iteration of generation with tf.control_dependencies([saved_test_output.assign(test_output),                            saved_test_state.assign(test_state)]):
    test_prediction = tf.nn.softmax(tf.nn.xw_plus_b(test_output, w, b))
# Reset test state 
reset_test_state = tf.group(saved_test_output.assign(tf.random_normal([1,                             num_nodes],stddev=0.05)),
    saved_test_state.assign(tf.random_normal([1, num_nodes],stddev=0.05)))

Пример сгенерированного текста 
Давайте рассмотрим некоторые данные, сгенерированные LSTM после 50 шагов обучения:
they saw that the birds were at her bread, and threw behind him a comb which made a great ridge with a thousand times thousands of spikes.  that was a collier.  the nixie was at church, and thousands of spikes, they were flowers, however, and had hewn through the glass, the children had formed a hill of mirrors, and was so slippery that it was impossible for the nixie to cross it.  then she thought, i will go home quickly and fetch my axe, and cut the hill of glass in half.  long before she returned, however, and had hewn through the glass, the children saw her from afar, and he sat down close to it, and was so slippery that it was impossible for the nixie to cross it.

они увидели, что птицы были у нее на хлебе, и бросили за ним расческу, которая образовала огромный гребень с тысячей и тысячами шипов. это было угнетение. Никси был в церкви, и тысячи шипов, они были цветами, однако, и прорезали через стекло, дети образовали холм зеркал, и было настолько скользко, что Никси не мог пересечь его. Затем она подумала: я быстро пойду домой, возьму свой топор и рассечу стеклянный холм пополам. однако задолго до того, как она вернулась и прорубила стекло, дети увидели ее издалека, и он присел рядом с ним, и было так скользко, что никси не могла пересечь его.
Как вы можете видеть, текст выглядит намного лучше, чем текст, который мы видели генерируемым из RNN. На самом деле в нашем учебном корпусе существует история о водяной нише. Тем не менее, наша LSTM не просто выводит этот текст, но добавляет больше цвета к этой истории, вводя новые вещи, такие как речь о церкви и цветах, которых нет в оригинальном тексте. Далее мы рассмотрим, как текст, сгенерированный из стандартных LSTM, сравнивается с другими моделями, такими как LSTM с глазками и GRU.
Сравнение LSTM с LSTM с подключениями к глазкам и GRU 
Теперь мы сравним LSTM с LSTM с глазками и GRU в задаче генерации текста. Это поможет нам сравнить, насколько хорошо разные модели (LSTM с глазками и GRU) работают с точки зрения сложности и качества сгенерированного текста. Это доступно в качестве упражнения в lstm_extensions.ipynb, расположенном в папке ch8. 
Стандартный LSTM 
Сначала мы повторим компоненты стандартного LSTM. Мы не будем повторять код для стандартных LSTM, поскольку он идентичен тому, что мы обсуждали ранее. Наконец, мы увидим некоторый текст, сгенерированный LSTM. 
Обзор 
Здесь мы еще раз рассмотрим, как выглядит стандартный LSTM. Как мы уже упоминали, LSTM состоит из следующего: 
· Входной шлюз: это решает, какая часть текущего ввода записывается в состояние ячейки. 
· Шлюз забывания: он решает, сколько из предыдущего состояния ячейки записывается в текущее состояние ячейки. 
· Выходной шлюз: решает, сколько информации из состояния ячейки подвергается выводу во внешнее скрытое состояние.
На рисунке 8.1 мы проиллюстрируем, как соединены каждый из этих элементов, входа, состояния ячейки и внешних скрытых состояний:
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Рисунок 8.1: Ячейка LSTM
Пример сгенерированного текста 
Здесь мы покажем текст, сгенерированный стандартным LSTM после одного шага обучения и 25 шагов обучения на нашем наборе данных. Текст, созданный на шаге 1:
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there, said the father for a while, and her trouble she was to carry the mountain.  then they were all the child, and they were once and only sighed, but they said, i am as old now as the way and drew the child, and he began and wife looked at last and said, i have the child, fath-turn, and hencefore they were to himself, and then they trembled, hand all three days with him.  when the king of the golden changeling, and his wife looked at last and only one lord, and then he was laughing, wished himself, and then he said nothing and only sighed.  then they had said, all the changeling laugh, and he said, who was still done, the bridegroom, and he went away to him, but he did not trouble to the changeling away, and then they were over this, he was all to the wife, and she said, has the wedding did gretel give her them, and said, hans in a place. in her trouble shell into the father.  i am you. the king had said, how he was to sweep.  then the spot on hand but the could give you doing there,

Тогда, что они, то и то, и тогда и то, и то, и то, и то, и то, и то, с чем видение, то есть, и То, что было, то и было, и было, и когда была задняя сыворотка, то и было, как ударили, чтобы он был, он был его, был был, был и был они были и были задними, а затем - остроумие, чтобы видеть, и то, что у них есть, то есть, как остроумие, - то остроумие, что они взяли, и сыворотка чем он был, и где он был, и где он был, и где он был, и там, и тогда, и там, и там, где и когда Когда вы поймете, когда вы попадете, попал в цель, где вы должны были выйти, а затем ударил, а затем - в то - то, - в, - в - то, что в остроумие! там же е
там, сказал отец некоторое время, и ее беда, она должна была нести гору. тогда они все были ребенком, и они когда-то вздохнули, но они сказали: я сейчас такой же старый, как и нарисовал ребенка, и он начал, и жена наконец посмотрела и сказала: «У меня есть ребенок, Повернись, и, следовательно, они были к себе, и затем они дрожали, передавай ему все три дня. когда король золотого подменыша и его жена посмотрели наконец и только на одного лорда, а потом он смеялся, желал себе, а потом ничего не сказал и только вздохнул. затем они сказали, весь подменышный смех, и он сказал, кто еще был готов, жених, и он ушел к нему, но он не беспокоился о подменышке, и тогда они были над этим, он был все для у жены, и она сказала, была свадьба, Гретель дала ей их, и сказала, Ганс в месте. в ее беде переходит в отца. я есть ты. король сказал, как он должен подмести. тогда место под рукой, но может дать вам делать там,

Мы можем видеть, что на шаге 25 наблюдается довольно резкое повышение качества текста по сравнению с шагом 1. Кроме того, этот текст выглядит намного лучше, чем текст, который мы видели в главе 6, Примеры рекуррентных нейронных сетей, когда 100 историй были использованы для обучения модели. 
Gated Recurrent Units (GRUs) 
Здесь мы сначала кратко опишем, из чего состоит GRU, а затем код для реализации ячейки GRU. Наконец, мы рассмотрим некоторый код, сгенерированный ячейкой GRU. 
Обзор 
Для обзора давайте кратко рассмотрим, что такое GRU. GRU - это элегантное упрощение операций LSTM. GRU представляет две разные модификации LSTM (см. Рисунок 8.2): 
• Он соединяет внутреннее состояние ячейки и внешнее скрытое состояние в одно состояние. 
• Затем он объединяет входной шлюз и шлюз забывания в один шлюз обновления
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Рисунок 8.2: Ячейка GRU
Код 
Здесь мы определим ячейку GRU:
def gru_cell(i, o):
    """Create a GRU cell."""
    reset_gate = tf.sigmoid(tf.matmul(i, rx) + tf.matmul(o, rh) + rb)
    h_tilde = tf.tanh(tf.matmul(i,hx) + tf.matmul(reset_gate * o, hh) + hb)
    z = tf.sigmoid(tf.matmul(i,zx) + tf.matmul(o, zh) + zb)
    h = (1-z)*o + z*h_tilde
        return h

Затем мы будем вызывать этот метод, как мы это делали ранее в нашем примере:
for i in train_inputs:
    output = gru_cell(i, output)
    output = tf.nn.dropout(output,keep_prob=1.0-dropout)
    outputs.append(output) 

Пример сгенерированного текста 
Здесь мы покажем текст, сгенерированный GRU после одного шага обучения и 25 шагов обучения на нашем наборе данных. Текст, созданный на шаге 1:
  hing ther that ther her to the was shen andmother to to her the cake, and the caked the woked that the wer hou shen her the the the that her her, and to ther to ther her that the wer the wer ther the wong are whe was the was so the the caked her the wong an the woked the wolf the soought and was the was he grandmred the wolf sas shen that ther to hout her the the cap the wolf so the wong the soor ind the wolf the when that, her the the wolf to and the wolf sher the the cap the cap.  the wolf so ther the was her her, the the the wong and whe her the was her he grout the ther, and the cap., and the caked the the ther the were cap and the would the the wolf the was the whe wher cad-the cake the was her her, he when the ther, the wolf so the that, and the wolf so and her the the the cap.  the the wong to the wolf, andmother the cap. the so to ther ther, the woked he was the was the when the caked her cad-ing and the cake, and

Он сказал ей, что она должна была приготовить пирог, и пирог проснулся, чтобы показать ей, что она ей, и чтобы ей было, что она будет вон. было то, что было так, что запекла ее, вонга и проснулась волка, парила, и была, он был бабушкой волка sas shen shen shen shen shen she shen she shen shen shen shen shen shen shen shen shen shen shen shen shen shen shen shen shen shen shen shed shen s that shen s her sout sheout her the cap the wolf волк к и волк шер кепка кепка. волк настолько, что она была ею, вонг и где она была ею, он закачивал и шапку, и запекшуюся шапку и шапку волка были там, где она -Торт был ее ей, он, когда там, волк так, что, и волк, так и ее в кепке. Вонг к волку, и мама шапку. так проснулся он был тем, когда испекла ее бисквит и торт, и

Текст, созданный на шаге 25:
you will be sack, and the king's son, the king continued, and he was about to them all, and that she was strange carry them to somether, and who was there, but when the shole before the king, and the king's daughter was into such into the six can dish of this wine before the said, the king continued, and said to the king, when he was into the castle to so the king. then the king was stranged the king. then she said, and said that he saw what the sack, but the king, and the king content up the king. the king had the other, and said, it is not down to the king was in the blower to be took them.  then the king sack, the king, and the other, there, and said to the other, there, and the king, who had been away, the six content the six conved the king's strong one, they were not down the king. then she said to her, and saw the six content until there, and the king content until the six convered the

ты будешь уволен, и сын царя продолжал царь, и он был близок ко всем им, и что она была странной, неси их к кому-нибудь, и кто был там, но когда стрелял перед царем, и дочь царя была в такое в шесть банок этого вина перед сказанным, продолжал царь и сказал царю, когда он был в замке так царю. тогда король был задушен королем. затем она сказала, и сказала, что он видел, что мешок, но король, и король довольствовался королем. у короля был другой, и сказал, что это не так, чтобы король был в воздуходувке, чтобы взять их. тогда царь уволил, царя и другого, там, и сказал другому, там, и царя, который был в отъезде, шесть довольствовались тем, что шестеро собрали сильного царя, что они не были ниже царя. затем она сказала ей, и увидела содержимое шести, пока там, и содержание царя, пока шесть не выразил

Мы видим, что с точки зрения качества текста, GRU не демонстрируют существенного улучшения качества по сравнению со стандартными LSTM. Тем не менее, выходные данные GRU, кажется, имеют больше повторений (например, слово «король») в тексте чаще, чем LSTM. Возможно, это связано с компрометацией долговременной памяти, вызванной упрощением модели (то есть наличием только одного состояния по сравнению с двумя состояниями в стандартном LSTM).
LSTM с глазками 
Здесь мы обсудим LSTM с глазками и как они отличаются от стандартного LSTM. Далее мы обсудим их реализацию, а затем текст, сгенерированный LSTM с моделью глазков. 
Обзор 
Теперь давайте кратко рассмотрим LSTM с глазками. Глазки - это, по сути, способ, с помощью которого шлюзы (вход, забывание и вывод) могут непосредственно видеть состояние ячейки вместо ожидания внешнего скрытого состояния (см. Рисунок 8.3):
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Рисунок 8.3: LSTM с глазками
Код 
Обратите внимание, что мы поддерживаем диагональные связи. Мы обнаружили, что недиагональные глазковые соединения (предложенные Джерсом и Шмидхубером в их статье «Периодические сети, время и счет», «Нейронные сети», 2000) в большей степени влияют на производительность, чем на задачу моделирования языка. Таким образом, мы приняли другой вариант, в котором используются диагональные соединения глазков, которые используются Sak, Senior и Beaufays в своей статье «Архитектуры с повторяющейся нейронной сетью с кратковременной памятью для крупномасштабного акустического моделирования», Материалы ежегодной конференции Международной речевой коммуникации. Ассоциация, ИНТЕРСПИЧ, 2014: 338-342.
Ниже приведена реализация кода:
def lstm_with_peephole_cell(i, o, state):
        input_gate = tf.sigmoid(tf.matmul(i, ix) + state*ic +  tf.matmul(o, im) + ib)    forget_gate = tf.sigmoid(tf.matmul(i, fx) + state*fc +  tf.matmul(o, fm) + fb)
    update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb    
state = forget_gate * state + input_gate * tf.tanh(update)
    output_gate = tf.sigmoid(tf.matmul(i, ox) + state*oc + tf.matmul(o, om) + ob)
    return output_gate * tf.tanh(state), state

Затем мы будем вызывать этот метод для каждой партии входных данных для охвата всех временных шагов (то есть временных шагов num_unrollings), как в этом коде:
for i in train_inputs:
    output, state = lstm_with_peephole_cell(i, output, state)
    output = tf.nn.dropout(output,keep_prob=1.0-dropout)
    outputs.append(output)

Пример сгенерированного текста 
Здесь мы показываем текст, сгенерированный стандартным LSTM после одного шага обучения и 25 шагов обучения на нашем наборе данных. Ниже приведен текст, созданный на шаге 1:
our oned he the the hed the the the he here hed he he e e and her and the ther her the then hed and her and her her the hed her and the the he he ther the hhe the he ther the whed hed her he hthe and the the the ther the to e and the the the ane and and her and the hed ant and the and ane hed and ther and and he e the th the hhe ther the the and the the the the the the hed and ther hhe wher the her he he and he hthe the the the he the then the he he e and the the the and and the the the ther to he hhe wher ant the her and the hed the he he the and ther and he the and and the ant he he e the and ther he e and ther here th the whed

он, он, он, он, он, он, он, он, он, она, и она, и то, тогда она, и она, и она, и она, и она, и он, и он, он, он, он, он, он, он, он, который он, он, который он, он, он, он и То есть, то и е, и ан, и она, и она, и хед, и он, и хед, и он, и он, и он, и он, и он, и он, и он, и он она, он, он, и он, то он, то он, то он, он, и, и, и, то, что он, он, и она, и он, и он, и он, и он, и он, и он, и он, и он, и муравей, он он и здесь он и здесь

Ниже приведен текст, созданный на шаге 25:
will, it was there, and it was me, and i trod on the stress and there is a stone and the went and said, klink, and that the princess and they said, i will not stare it, the wedding and that the was of little the sun came in the sun came out, and then the wolf is took a little coat and i were at little hand and beaning therein and said, klink, and broke out of the shoes he had the wolf of the were to patches a little put into the were, and they said, she was to pay the bear said, "ah, that they come to the well and there is a stone and the wolf were of the light, and that the two old were of glass there is a little that his well as well and wherever a stone and they were the went to the well, and the went the sun came in the seater hand, and they said, klink, and broke in his sead, and i were my good one the wedding and said, that the two of slapped to said to said, "ah, that his store once the worl's said, klink, but the went out of a patched on his store, and the wedding and said, that

будет, это было там, и это был я, и я наступил на стресс, и есть камень, и пошел и сказал, klink, и что принцесса, и они сказали, я не буду смотреть на это, свадьба и что было Солнце взошло, солнце взошло, и тогда волк взял маленькую шубу, и я был у него под рукой, стучал в нем и сказал: «Звякни, и вырвался из туфель, которые волк из него должен был залатать». немного положил в место, и они сказали, что она должна была заплатить медведю, сказал: «ах, что они приходят к колодцу, и есть камень, и волк были от света, и что два старых были из стекла, есть немного, что его хорошо, и где бы камень, и они были, пошли к колодцу, и солнце взошло, взошло в руке сидящего, и они сказали, klink, и сломался в его sead, и я был моим хорошим на свадьбу и сказал, что двое из пощечины сказал, чтобы сказал, "ах, что его магазин однажды сказал, klink, но тот вышел из залатан на его магазине, а свадьба и сказал, что T

Текст, созданный LSTM с глазками, кажется, грамматически беден по сравнению с текстом, созданным LSTM или GRU. Давайте теперь посмотрим, как каждый метод сравнивается количественно с точки зрения меры недоумения. 
Недостатки обучения и проверки во времени 
На рисунке 8.4 мы представим поведение растерянности во времени для LSTM, LSTM с глазками и GRU. Во-первых, мы можем видеть, что отсутствие отсева дает значительное снижение сложности при тренировках. Тем не менее, мы не должны делать вывод, что отсев отрицательно сказывается на производительности, так как эта привлекательная производительность связана с переобучением обучающих данных. Это видно из графика недоумения валидации. Хотя недоумение train LSTM, по-видимому, конкурирует с моделями, которые используют отсев, недоумение валидации намного выше, чем у этих моделей. Это показывает нам, что отсев фактически помогает нам в задаче генерации языка. Кроме того, из всех методов, которые используют dropout, мы видим, что LSTM и GRU обеспечивают наилучшую производительность. Одним удивительным наблюдением является то, что LSTM с глазками вызывают худшее недоумение при обучении и немного худшее недоумение при проверке. Это означает, что глазковые соединения не добавляют никакой ценности к решению нашей проблемы, но вместо этого затрудняют оптимизацию, вводя больше параметров в модель. После этого анализа мы будем использовать LSTM с этого момента. Мы оставляем эксперименты с ГРУ в качестве упражнения для читателей:[image: ]
Рисунок 8.4: Изменение недоумения для тренировочных данных во времени (LSTM, LSTM (глазок) и GRU)
В текущей литературе предполагается, что среди LSTM и GRU нет явного победителя, и многое зависит от задачи (см. Статью «Эмпирическая оценка рекуррентных нейронных сетей закрытого типа по моделированию последовательностей», Chung и др., Семинар NIPS 2014 по глубокому обучению, декабрь). 2014).
Улучшение LSTM - поиск луча 
Как мы видели ранее, сгенерированный текст может быть улучшен. Теперь давайте посмотрим, может ли поиск лучей, который мы обсуждали в главе 7, «Сети с кратковременной длинной памятью», помочь улучшить производительность. При поиске луча мы посмотрим вперед на несколько шагов (так называемый луч) и получим луч (то есть последовательность биграмм), который имеет наибольшую общую вероятность, рассчитанную отдельно для каждого луча. Совместная вероятность рассчитывается путем умножения вероятностей предсказания каждой предсказанной биграммы в луче. Обратите внимание, что это жадный поиск, означающий, что мы будем вычислять лучших кандидатов на каждой глубине дерева итеративно по мере роста дерева. Следует отметить, что этот поиск не приведет к лучшему в мире лучу.
Реализация поиска луча 
Чтобы реализовать поиск луча, нам нужно только изменить технику генерации текста. Операции обучения и проверки остаются неизменными. Однако код будет более сложным, чем поток операций генерации текста, который мы видели ранее. Этот код доступен в конце файла упражнения lstm_for_text_generation.ipynb в папке ch8. Сначала мы определим длину луча (то есть количество шагов, которые мы смотрим в будущее) и beam_neighbors (то есть количество кандидатов, которые мы сравниваем на каждом временном шаге):
beam_length = 5 
beam_neighbors = 5 

Мы определим количество beam_neighbor заполнителей, чтобы поддерживать лучших кандидатов на каждом временном шаге:
sample_beam_inputs = [tf.placeholder (tf.float32, shape = [1, vocabulary_ size]) 
для _ в диапазоне (beam_neighbors)] 

Далее мы определим два заполнителя для хранения наилучшего жадно найденного глобального индекса луча и локально поддерживаемого лучшего кандидата 
Индексы луча, которые мы будем использовать для продолжения наших прогнозов для следующего этапа прогнозов:
best_beam_index = tf.placeholder (shape = None, dtype = tf.int32) best_neighbor_beam_indices = tf.placeholder (shape = [beam_neighbors], 
dtype = tf.int32) 

Затем мы определим переменные состояния и вывода для каждого кандидата луча, как мы делали для один прогноз ранее:
saved_sample_beam_output = [tf.Variable(tf.zeros([1, num_nodes])) 
for _ in range(beam_neighbors)] 
saved_sample_beam_state = [tf.Variable(tf.zeros([1, num_nodes])) 
for _ in range(beam_neighbors)] 
We will also define state reset operations:
reset_sample_beam_state = tf.group(    *[saved_sample_beam_output[vi].assign(tf.zeros([1, num_nodes])) 
for vi in range(beam_neighbors)],    *[saved_sample_beam_state[vi].assign(tf.zeros([1, num_nodes])) 
for vi in range(beam_neighbors)] )

Кроме того, нам потребуются расчеты для вывода ячеек и прогнозирования для каждого луча:
# We calculate lstm_cell state and output for each beam 
sample_beam_outputs, sample_beam_states = [],[] 
for vi in range(beam_neighbors):
    tmp_output, tmp_state = lstm_cell(sample_beam_inputs[vi], saved_sample_beam_output[vi],
        saved_sample_beam_state[vi]
    )
    sample_beam_outputs.append(tmp_output)
    sample_beam_states.append(tmp_state)
# For a given set of beams, outputs a list of prediction vectors of size beam_neighbors 
# each beam having the predictions for full vocabulary 
sample_beam_predictions = [] for vi in range(beam_neighbors):
    with tf.control_dependencies([saved_sample_beam_output[vi]. assign(sample_beam_outputs[vi]), saved_sample_beam_state[vi]. assign(sample_beam_states[vi])]):        sample_beam_predictions.append(tf.nn.softmax(tf.nn.xw_plus_b(sample_beam_outputs[vi], w, b)))

Далее мы определим новый набор операций для обновления состояния и выходных переменных каждого луча с лучшими индексами кандидатов лучей, найденными на каждом шаге. Это важно для каждого шага, поскольку лучшие кандидаты в пучке не будут равномерно разветвляться от каждого дерева на заданной глубине. Рисунок 8.5 показывает пример. Мы укажем лучшие кандидатные балки жирным шрифтом и стрелками:
[image: ]
Рисунок 8.5: Поиск луча, иллюстрирующий требование обновления состояний луча на каждом этапе
Как видно здесь, кандидаты выбираются неравномерно, всегда имея одного кандидата из поддерева (набора стрелок, начинающихся с одной и той же точки) на заданной глубине. Например, на второй глубине нет никаких кандидатов, порождаемых с пути охота → король, поэтому обновление состояния, которое мы рассчитали для этого пути, больше не является полезным. Таким образом, состояние, которое мы поддерживали для этого пути, должно быть заменено обновлением состояния, которое мы имели для пути king → was, поскольку теперь есть два пути, разделяющие родительский king → was. Мы будем использовать следующий код для замены состояний:
stacked_beam_outputs = tf.stack (сохраненный_пример_beam_output) stacked_beam_states = tf.stack (сохраненный_прием_beam_state)
update_sample_beam_state = tf.group (* [сохраненный_образец_beam_output [vi] .assign (tf.gather_nd (stacked_beam_ output, [best_neighbor_beam_indices [vi]]))) для vi в диапазоне (beam_ соседей)], * [сохраненный_образец_beam_state [vi]. .gather_nd (stacked_beam_ состояния, [best_neighbor_beam_indices [vi]])) для vi в диапазоне (beam_ соседей)]) 

Примеры, созданные с помощью поиска луча 

Давайте посмотрим, как наша LSTM работает с поиском луча. Это выглядит лучше, чем раньше: 
и они приплыли к нему и сказали, о, королева. где небеса, она пошла к ней, и теребил там, где все царство также, и что она дала ему так, что он должен есть, и они дали ему деньги, Ганс взял его голову, что он был церковным, и они дали ему деньги, Ханс взял его голову, что он был миром, и, тем не менее, он умолял его, чтобы он был помещен туда, где они были снова принесены в рог мыши. откуда ты пришел? затем пролистать, где мир, и когда они пришли к ним, и что он скоро вернулся, и тогда сделают так, что они покорили мир, и, как это ни слышали, они вышли через комнату и сказали сын царя снова был и сказал: ах, отец, я был во сне, потому что его лошадь снова открыла дверь. когда они увидели друг друга, что они были. потом они увидели, что были. 

По сравнению с текстом, созданным LSTM, этот текст, кажется, имеет больше вариаций в тексте, сохраняя при этом текст грамматически согласованным. Таким образом, на самом деле, поиск луча помогает производить качественные предсказания по сравнению с предсказаниями по одному слову за раз. Кроме того, мы видим, что LSTM интересно объединяет различные элементы из историй, чтобы придумать интересные концепции (например, рог мыши, объединение Thumbling, персонажа и Hans, персонажа из другой истории). Но все же есть случаи, когда слова вместе не имеют большого смысла. Давайте посмотрим, как мы можем улучшить наш LSTM дальше.

Улучшение LSTM - генерирование текста со словами вместо n-граммов. 
Здесь мы обсудим способы улучшения LSTM. Во-первых, мы обсудим, как растет число параметров модели, если мы используем функции слова в горячем кодированном виде. Это побуждает нас использовать низкоразмерные векторы слов вместо однозначно закодированных векторов. Наконец, мы обсудим, как мы можем использовать векторы слов в коде для генерации более качественного текста по сравнению с использованием биграмм. Код для этого раздела доступен в lstm_word2vec.ipynb в папке ch8. 
Проклятие размерности 
Одним из основных ограничений, мешающих нам использовать слова вместо n-грамм в качестве входных данных для нашего LSTM, является то, что это резко увеличит количество параметров в нашей модели. Давайте разберемся в этом на примере. Предположим, что у нас есть вход размером 500 и состояние ячейки размером 100. В результате получается всего около 240К параметров (исключая слой softmax), как показано здесь:
=~4x(500x100 + 100x100 + 100) = ~240K
Давайте теперь увеличим размер ввода до 1000. Теперь общее количество параметров будет примерно 440K, как показано здесь:
=~4x(1000x100 + 100x100 + 100) = ~440K
Как видите, при увеличении на 500 единиц входной размерности число параметров увеличилось на 200 000. Это не только увеличивает вычислительную сложность, но также увеличивает риск переоснащения из-за большого количества параметров. Итак, нам нужны способы ограничения размерности ввода. 
Word2vec на помощь 
Как вы помните, Word2vec может не только предоставлять представление слов с более низкими размерами по сравнению с кодированием в горячем режиме, но также дает семантически обоснованные функции. Чтобы понять это, давайте рассмотрим три слова: кошка, собака и вулкан. Если мы закодируем только эти слова и вычислим евклидово расстояние между ними, то оно будет следующим: расстояние (кошка, вулкан) = расстояние (кошка, собака)
Приложения LSTM - Генерация текста
Однако, если мы изучим вложение слов, это будет следующим: 
расстояние (кошка, вулкан) > расстояние (кошка, собака) 
Мы хотели бы, чтобы наши особенности представляли последнее, где похожие вещи имеют меньшее расстояние, чем разнородные. Следовательно, модель сможет генерировать более качественный текст. 
Генерация текста с помощью Word2vec 
Здесь наш LSTM становится немного сложнее, чем стандартный LSTM, так как мы подключаем слой встраивания в середине ввода и LSTM. Рисунок 8.6 изображает общую архитектуру LSTM-Word2vec. Это доступно в качестве упражнения в файле lstm_word2vec.ipynb, расположенном в папке ch8.
[image: ]
Рисунок 8.6: Структура языка моделирования LSTM с использованием векторов слов
Сначала мы изучим векторы слов, используя модель Continuous Bag-of-Words (CBOW). Ниже приведены некоторые из лучших отношений, изученных нашей моделью Word2vec:
Nearest to which: what Nearest to not: bitterly, easily, praying, unseen Nearest to do: did Nearest to day: evening, sunday Nearest to two: many, kinsmen Nearest to will: may, shall, 'll Nearest to pick-axe: ladder Nearest to stir: bestir, milk
Теперь мы можем подавать вложения - вместо векторов с горячим кодированием - в LSTM. Для этого мы включили функцию tf.nn.embedding_lookup следующим образом:
for ui in range(num_unrollings):
    train_inputs.append(tf.placeholder(tf.int32, shape=[batch_ size],name='train_inputs_%d'%ui))
    train_inputs_embeds.append(tf.nn.embedding_ lookup(embeddings,train_inputs[ui]))

Для более общей задачи моделирования языка мы можем использовать уже имеющиеся предварительно подготовленные векторы слов. Векторы слов, найденные путем изучения из текстового корпуса с миллиардами слов, свободно доступны для скачивания и использования. Здесь мы перечислим несколько таких репозиториев, которые являются легкодоступными векторами слов: 
• Word2vec: https://code.google.com/archive/p/ word2vec / 
• Предварительно обученные векторы слов GloVe: https: //nlp.stanford. edu / projects / glove / 
• векторы слова fastText: https://github.com/ facebookresearch / fastText / blob / master / pretrained-vectors.md 
Однако, поскольку мы работаем со словарем очень ограниченного размера, мы изучим наш собственные векторы слов. Это приведет к дополнительным вычислительным затратам, если мы попытаемся использовать эти массивные репозитории векторов слов для словарного запаса в несколько тысяч слов. Более того, поскольку мы выводим истории, некоторые уникальные слова (например, эльфы и водные ники), возможно, даже не использовались во время обучения.
Остальная часть кода будет аналогичным образом использоваться для вычислений ячеек LSTM, потерь, оптимизации и прогнозов, которые мы обсуждали ранее. Однако помните, что наш входной размер больше не является размером словаря, а размером вложения.
Примеры, созданные с помощью LSTM-Word2vec и поиска луча 
Следующий текст генерируется LSTM-Word2vec (после применения простого шага предварительной обработки, включающего удаление избыточных пробелов). Теперь текст выглядит довольно реалистично:
i am in a great castle. the king's son. the king 's son. "you are mine  with the dragon , and  a glass mountain and she gave it to you. "the king's son. "i  have not". "no," said the  king's son , and  a great lake, and in its little dish, which was much larger than do you want to have  not. the king. if i had a great lake, but it was not long before it. then the king's son. the king's son, however, drank only the milk.  then the king 's son said, "you are not". then the wedding was celebrated, and when she got to the king's son. "you are mine, and a glass mountain and the king 's son, however. they gave him to see her heart, and went away, and the old king's son, who was sitting by the town, and when they went to the king's boy. she was in its little head against it as long as it had strength to do so, until at last it was standing in the kitchen and heard the crown, which are so big. when she got into a carriage, and slept in the whole night, and the wedding was celebrated, and when she got to the glass mountain they thrust the princess remained, the child says, come out.  when she got into a great lake, but the king's son, and there was a great lake before the paddock came to a glass mountain, and there were full of happiness. when the bride, she got to sleep in a great castle, and as soon as it was going to be put to her house, but the wedding was celebrated, and when she got to the old woman, and a glass of wine. when it was evening, she began to cry in the whole night, and the wedding was celebrated, and after this the king's boy. and when she had washed up, and when the bride, who came to her, but when it was evening, when the king 's son. the king 's son. the king 's son. "i will follow it. then the king". if i had a great lake, and a glass mountain, and there were full dress, i have not. "thereupon the king's son as the paddock had to put in it. she felt a great lake, so she is mine. then the king 's son's son"

Я в прекрасном замке. сын короля. сын короля. «Ты мой с драконом и стеклянной горой, и она дала ее тебе», сын царя. "Я нет". «Нет», сказал сын царя, и большое озеро, и в его маленьком блюде, которое было намного больше, чем вы хотели бы не иметь. король. если бы у меня было отличное озеро, но это было незадолго до него. потом сын короля. сын царя, однако, пил только молоко. тогда сын царя сказал: нет. затем свадьба была отмечена, и когда она добралась до сына царя. «Ты мой, и стеклянная гора, и сын царя, однако. Они дали ему увидеть ее сердце, и ушли, и сын старого царя, который сидел у города, и когда они пошли к царю мальчик, она была в его маленькой голове против него, пока у него были силы, чтобы сделать это, пока, наконец, он не стоял на кухне и не услышал корону, которая такая большая, когда она села в коляску, и спал в всю ночь, а свадьбу праздновали, и когда она добралась до стеклянной горы, они воткнули оставшуюся принцессу, говорит ребенок, выходи, когда она попала в большое озеро, но сын царя, и прежде было большое озеро загон пришел к стеклянной горе, и там было полно счастья. когда невеста, она заснула в большом замке, и как только его собирались положить в ее дом, но свадьбу праздновали, и когда она добралась до старухи и за бокал вина. когда был вечер, она начала плакать всю ночь, а свадьбу праздновали, и после этого мальчик короля. и когда она умылась, и когда невеста, которая пришла к ней, но когда был вечер, когда сын царя. сын короля. сын короля. «Я последую за этим. Тогда король». Если бы у меня было отличное озеро и стеклянная гора, и там было полное платье, я бы этого не сделал. "После этого сын короля, как загон в паддоке. Она почувствовала большое озеро, поэтому она моя. Тогда сын сына короля"

Вы можете видеть, что нет повторений текста, как мы видели со стандартными RNN, и текст выглядит грамматически правильным в большинстве случаев, и очень мало орфографических ошибок. Итак, мы проанализировали, как выглядит сгенерированный текст для стандартных LSTM, LSTM с глазками, GRU, LSTM с поиском луча и LSTM с поиском луча с использованием Word2vec. Теперь мы увидим, как эти методы снова сравниваются количественно.
Запутанность во времени 
Здесь, на рисунке 8.7, мы представим поведение растерянности во времени для всех методов, которые мы видели до сих пор: LSTM, LSTM с глазками, GRU и LSTM, использующих функции Word2vec. Чтобы сделать сравнение интересным, мы также сравним одну из лучших моделей, которую мы можем придумать: трехслойный LSTM, который использует векторы слов и выпадение. Мы можем видеть, что из методов, которые используют dropout (то есть методов, которые уменьшают переоснащение), LSTM с функциями Word2vec показывают многообещающие результаты. Я не утверждаю, что LSTM с Word2vec обеспечивают хорошую производительность, основанную только на числовых значениях, но также учитывая сложность проблемы. В настройках Word2vec атомная единица, которую мы используем для обучения, - это слова, в отличие от других моделей, использующих биграммы. Из-за большого объема словаря генерация языка на уровне слов может быть сложной задачей по сравнению с таковой на уровне биграммы. Поэтому достижение недоумения в обучении на уровне слов, сравнимого с таковым у моделей на основе биграмм, можно рассматривать как хорошую производительность. Глядя на недоумение валидации, мы видим, что основанные на слове-векторе методы демонстрируют более высокую недоумение валидации. Это понятно, так как задача более сложная из-за большого словарного запаса. Еще одно интересное наблюдение, на которое я хотел бы обратить ваше внимание, это сравнение однослойных LSTM и глубоких LSTM. Вы можете видеть, что глубокий LSTM демонстрирует гораздо более низкую и стабильную сложность проверки с течением времени, что позволяет нам полагать, что глубокие модели часто дают лучшие результаты. Обратите внимание, что мы не сообщаем о результатах использования поиска луча, так как поиск луча влияет только на прогноз и не влияет на недоумение при обучении:
[image: ]
Рисунок 8.7: Изменение недоумения для обучающих данных во времени (LSTM, LSTM (Peephole) и GRU, а также LSTM + Word2vec)
Использование RNN API TensorFlow 
Теперь мы рассмотрим, как мы можем использовать RNN API TensorFlow для упрощения кода. RNN API TensorFlow содержит множество функций, связанных с RNN, которые помогают нам быстрее и проще внедрять RNN. Теперь мы увидим, как тот же пример, который мы обсуждали в предыдущих разделах, может быть реализован с помощью TNSORFlow RNN API. Однако, чтобы сделать вещи захватывающими, мы реализуем глубокую сеть LSTM с тремя уровнями, о которых мы говорили в сравнениях. Полный код этого доступен в файле lstm_word2vec_rnn_api.ipynb в папке Ch8. Сначала мы определим заполнители для хранения входных данных, меток и соответствующих векторов внедрения для входных данных. Мы игнорируем вычисления, связанные с проверкой данных, поскольку мы уже обсуждали их:
# Training Input data. 
train_inputs, train_labels = [],[] 
train_labels_ohe = [] 
# Defining unrolled training inputs 
for ui in range(num_unrollings):
    train_inputs.append(tf.placeholder(tf.int32,         shape=[batch_size],name='train_inputs_%d'%ui))    train_labels.append(tf.placeholder(tf.int32, shape=[batch_size], name = 'train_labels_%d'%ui))
    train_labels_ohe.append(tf.one_hot(train_labels[ui], vocabulary_size))
    # Defining embedding lookup operations for all the unrolled 
# trianing inputs train_inputs_embeds = [] 
for ui in range(num_unrollings):
    # We use expand_dims to add an additional axis
    # As this is needed later for LSTM cell computation    train_inputs_embeds.append(tf.expand_dims(                               tf.nn.embedding_lookup(embeddings,train_inputs[ui]),0))

После этого мы определим список ячеек LSTM из ячейки LSTM из RNN API:
# num_nodes here is a sequence of hidden layer sizes 
cells = [tf.nn.rnn_cell.LSTMCell(n) for n in num_nodes]

Мы также определим DropoutWrapper для всех ячеек LSTM, который выполняет операцию выпадения на входах / состояниях / выходах ячейки LSTM:
# We now define a dropout wrapper for each LSTM cell 
dropout_cells = [rnn.DropoutWrapper(cell=lstm, input_keep_prob=1.0,        output_keep_prob=1.0-dropout, state_keep_prob=1.0,
        variational_recurrent=True,
         input_size=tf.TensorShape([embeddings_size]),
        dtype=tf.float32
    )
 for lstm in cells ]

Параметры, предоставляемые этой функции:
• ячейка: это тип ячейки RNN, которую мы используем в вычислениях. 
• input_keep_prob: это количество единиц ввода, которые должны оставаться активированными при выполнении отсева (между 0 и 1) 
• output_keep_prob: это количество единицы измерения выходного сигнала, которые должны оставаться активированными при выполнении отсева 
Применение Dropout в рекуррентных нейронных сетях, семинар по машинному обучению с эффективным использованием данных, ICML (2016). 
Затем мы определим тензор с именем initial_state (инициализированный нулями), который будет содержать итеративно обновляемые состояния (как скрытое состояние, так и состояние ячейки) LSTM:
# Initial state of the LSTM memory. 
initial_state = stacked_dropout_cell.zero_state(batch_size, dtype=tf. float32)

Определив список ячеек LSTM, мы теперь можем определить объект MultiRNNCell, который инкапсулирует список ячеек LSTM следующим образом:
# We first define a MultiRNNCell Object that uses the 
# Dropout wrapper (for training) 
stacked_dropout_cell = tf.nn.rnn_cell.MultiRNNCell(dropout_cells) 
# Here we define a MultiRNNCell that does not use dropout 
# Validation and Testing 
stacked_cell = tf.nn.rnn_cell.MultiRNNCell(cells)

Далее мы вычислим вывод ячейки LSTM с помощью функции tf.nn.dynamic_rnn следующим образом:
# Defining the LSTM cell computations (training) 
train_outputs, initial_state = tf.nn.dynamic_rnn(stacked_dropout_cell, tf.concat(train_inputs_embeds,axis=0), time_major=True, initial_state=initial_state )

Для этой функции мы предоставим несколько параметров, как показано здесь: 
• ячейка: это тип последовательной модели, которая будет использоваться для вычисления выходных данных. В нашем случае это будет ячейка LSTM, которую мы определили ранее. 
• входы: это входы для ячейки LSTM. Входные данные должны иметь форму [num_unrollings, batch_size, embeddings_size]. Поэтому у нас есть все пакеты данных для всех временных шагов в этом тензоре. Мы будем называть этот тип данных мажорным, так как ось времени - это 0-я ось. 
• time_major: мы говорим, что наши входные данные являются основными по времени. 
• initial_state: LSTM для начала необходимо начальное состояние. 
После расчета окончательного скрытого состояния и состояния ячейки LSTM мы теперь определим логиты (ненормализованные оценки, полученные из слоя softmax для каждого слова) и прогнозы (нормализованные оценки уровня softmax для каждого слова):
# Reshape the final outputs to 
[num_unrollings*batch_size, num_nodes] 
final_output = tf.reshape(train_outputs,[-1,num_nodes[-1]])
# Computing logits 
logits = tf.matmul(final_output, w) + b 
# Computing predictions train_prediction = tf.nn.softmax(logits)

Тогда мы сделаем наши логи и метки основными. Это необходимо для функции потерь, которую мы будем использовать:
# Reshape logits to time-major fashion 
[num_unrollings, batch_size, vocabulary_size] 
time_major_train_logits = tf.reshape(logits,[num_unrollings,batch_ size,-1])
# We create train labels in a time major fashion 
[num_unrollings, batch_size, vocabulary_size] 
# so that this could be used with the loss function 
time_major_train_labels = tf.reshape(tf.concat(train_ labels,axis=0),[num_unrollings,batch_size])

Теперь мы придем к определению потерь между выходными данными, вычисленными из LSTM, слоем softmax и фактическими метками. Для этого мы будем использовать функцию tf.contrib.seq2seq.sequence_loss. Эта функция широко используется в задачах машинного перевода для вычисления разницы между выходным переводом модели и фактическим переводом, которые представляют собой последовательности слов. Следовательно, ту же концепцию можно распространить на нашу проблему, потому что мы по сути выводим последовательность слов:
# We use the sequence-to-sequence loss function to define the loss 
# We calculate the average across the batches 
# But get the sum across the sequence length 
loss = tf.contrib.seq2seq.sequence_loss(
    logits = tf.transpose(time_major_train_logits,[1,0,2]),
    targets = tf.transpose(time_major_train_labels),
    weights= tf.ones([batch_size, num_unrollings], dtype=tf.float32),    average_across_timesteps=False,
    average_across_batch=True )
loss = tf.reduce_sum(loss)

Давайте посмотрим на аргументы, которые мы предоставляем этой функции потерь:
 • logits: это ненормализованные оценки предсказаний, которые мы вычислили ранее. Однако эта функция принимает logits, упорядоченные по следующей форме: [batch_size, num_unrollings, vocabulary_size]. Для этого мы используем функцию tf.transpose. 
• цели: это фактические метки для пакета или последовательности входов. Они должны быть в форме [batch_size, num_unrollings]. 
• Веса: это веса, которые мы даем каждой позиции на оси времени, а также на оси партии. Мы не различаем входные данные по их позиции, поэтому мы установим значение 1 для всех позиций. 
• average_across_timesteps: мы не усредняем потери по временным шагам. Нам нужна сумма по временным шагам, поэтому мы установим ее в False. 
• average_across_batch: нам нужно усреднить потери по пакету, поэтому мы установим для этого параметра значение True. 
Далее мы определим оптимизатор, как мы делали раньше:
# Used for decaying learning rate 
gstep = tf.Variable(0, trainable=False)
# Running this operation will cause the value of gstep 
# to increase, while in turn reducing the learning rate
nc_gstep = tf.assign(gstep, gstep+1)
# Adam Optimizer. And gradient 
clipping. tf_learning_rate = tf.train.exponential_decay(0.001,gstep,decay_ steps=1, decay_rate=0.5)
print('Defining optimizer') 
optimizer = tf.train.AdamOptimizer(tf_learning_rate) 
gradients, v = zip(*optimizer.compute_gradients(loss)) 
gradients, _ = tf.clip_by_global_norm(gradients, 5.0) 
optimizer = optimizer.apply_gradients(zip(gradients, v))
inc_gstep = tf.assign(gstep, gstep+1)

Теперь, когда все функции определены, вы можете запустить код, как показано в файле упражнения. 
Резюме
В этой главе мы рассмотрели реализации алгоритма LSTM и другие различные важные аспекты для улучшения LSTM сверх стандартной производительности. В качестве упражнения мы обучили нашу LSTM тексту рассказов братьев Гримм и попросили LSTM выпустить новую историю. Мы обсудили, как реализовать LSTM с примерами кода, извлеченными из упражнений. Затем у нас была техническая дискуссия о том, как реализовать LSTM с глазками и GRU. Затем мы провели сравнение производительности между стандартным LSTM и его вариантами. Мы видели, что LSTM показали лучшие результаты по сравнению с LSTM с глазками и GRU. Мы сделали удивительное наблюдение, что глазки фактически повлияли на производительность, а не помогли в нашей задаче моделирования языка. Затем мы обсудили некоторые из возможных улучшений для повышения качества выходных данных, генерируемых LSTM. Первым улучшением был поиск луча. Мы рассмотрели реализацию поиска луча и рассказали, как реализовать его шаг за шагом. Затем мы рассмотрели, как мы можем использовать вложения слов, чтобы научить нашу LSTM выводить лучший текст. В заключение, LSTM - это очень мощные модели машинного обучения, которые могут охватывать как долгосрочные, так и краткосрочные зависимости. Более того, поиск луча на самом деле помогает создавать более реалистично выглядящие текстовые фразы по сравнению с предсказанием по одному за раз. Кроме того, мы увидели, что мы получили лучшую производительность, используя векторы слов в качестве входных данных вместо использования представления функции с горячим кодированием. В следующей главе мы рассмотрим еще одну интересную задачу, связанную с сетями прямой связи и LSTM: создание подписей к изображениям.
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